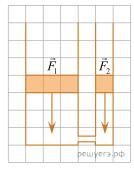

Централизованное тестирование по физике, 2012


При выполнении заданий с кратким ответом впишите в поле для ответа цифру, которая соответствует номеру правильного ответа, или число, слово, последовательность букв (слов) или цифр. Ответ следует записывать без пробелов и каких-либо дополнительных символов. Дробную часть отделяйте от целой десятичной запятой. Единицы измерений писать не нужно. Ответ с погрешностью вида $(1,4\pm0,2)$ Н записывайте следующим образом: 1,40,2.

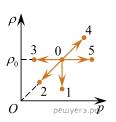
Если вариант задан учителем, вы можете вписать или загрузить в систему ответы к заданиям с развернутым ответом. Учитель увидит результаты выполнения заданий с кратким ответом и сможет оценить загруженные ответы к заданиям с развернутым ответом. Выставленные учителем баллы отобразятся в вашей статистике.

- 1. Прибор, предназначенный для измерения температуры тела, это:
- 1) линейка
- 2) термометр
- 3) амперметр
- 4) барометр
- 5) динамометр
- **2.** В момент времени $t_0 = 0$ с два тела начали двигаться вдоль оси Ox. Если их координаты с течением времени изменяются по законам $x_1 = 4t + 1,6t^2$ и $x_2 = -12t + 2,1t^2$ (x_1, x_2 в метрах, t в секундах), то тела встретятся через промежуток времени Δt , равный:
 - 1) 10 c
- 2) 16 c
- 3) 24 c
- 4) 32 c
- 5) 44 c
- **3.** Трасса велогонки состоит из трех одинаковых кругов. Если первый круг велосипедист проехал со средней скоростью $<v_1>=30$ км/ч, второй $<v_2>=33$ км/ч, третий $<v_3>=15$ км/ч, то всю трассу велосипедист проехал со средней скоростью $<v_2>=10$ пути , равной:
 - 1) 26 км/ч
- 2) 25 $\kappa m/q$
- 3) 24 км/ч
- 4) 23 км/ч
- 5) 22 км/ч
- **4.** К телу приложены силы \vec{F}_1 и \vec{F}_2 , лежащие в плоскости рисунка. Направления сил изменяются, но их модули остаются постоянными. Наибольшее ускорение a тело приобретет в ситуации, обозначенной на рисунке цифрой:

- **5.** Камень бросили горизонтально с некоторой высоты со скоростью, модуль которой $\upsilon_0 = 20$ м/с. Через промежуток времени $\Delta t = 3$ с от момента броска модуль скорости камня υ будет равен:
 - 1) 27 м/c
- 2) 30 м/c
- 3) 36 m/c
- 4) 46 m/c
- 5) 55 m/c
- **6.** Два соединенных между собой вертикальных цилиндра заполнены несжимаемой жидкостью и закрыты невесомыми поршнями, которые могут перемещаться без трения. К поршням приложены силы $\vec{F_1}$ и $\vec{F_2}$, направления которых указаны на рисунке. Если модуль силы $F_2=3$ H, то для удержания системы в равновесии модуль силы F_1 должен быть равен:

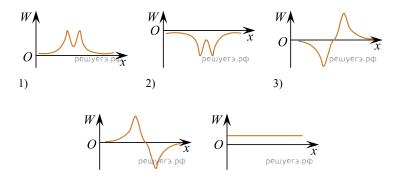
- 1) 3 H 2) 9 H
 - H 3) 13 H
- 4) 19 H
- 5) 27 H

7. Во время процесса, проводимого с одним молем идеального одноатомного газа, измерялись макропараметры состояния газа:


Измерение	Температура, К	Давление, кПа	Объем, л
1	280	233	10
2	320	266	10
3	340	283	10
4	360	299	10
5	380	316	10

Такая закономерность характерна для процесса:

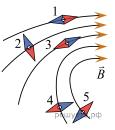
- 1) пиклического
- 2) изохорного
- 3) адиабатного 5) изотермического
- 4) изобарного
- **8.** На p-T диаграмме изображены различные состояния некоторого вещества. Состояние с наибольшей средней кинетической pэнергией молекул обозначено цифрой:


- 1) 1 2) 2 5) 5
- **9.** На рисунке изображена зависимость плотности ρ от давления pдля пяти процессов с идеальным газом, масса которого постоянна. Изохорное охлаждение газа происходит в процессе:

- 1)0-12)0-2
- 3)0-3
- 5)0-5
- **10.** Если масса электронов, перешедших на эбонитовую палочку при трении ее о шерсть, m $=36.4 \cdot 10^{-20}$ кг, то палочка приобретет заряд q равный:
 - 1) -16 нКл
- 2) -26 нКл
- 3) -30 нКл
- 4) -32 нКл
- 5) -64 нКл

11. Точечный отрицательный заряд q_0 движется параллельно оси Ох, проходящей через неподвижный точечный положительный заряд q_1 и неподвижный точечный отрицательный заряд q_2 (см. рис.). Если $q_2 = -q_1$, то график зависимости потенциальной энергии взаимодействия W заряда q_0 с неподвиж- Oными зарядами от его координаты х приведен на рисунке, обозначенном цифрой:

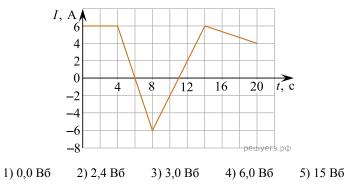
Примечание: влиянием неподвижных зарядов на траекторию движения до пренебречь. Условие уточнено редакцией РЕШУ ЦТ.


- 3)3
- 5) 5

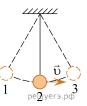
12. Пять резисторов, сопротивления которых $R_1 = 120$ Ом, $R_2 = 30$ Ом, $R_3 = 15$ Ом, $R_4 = 120$ Ом, $R_5 = 120$ Ом, $R_6 = 120$ Ом, $R_7 = 120$ Ом, $R_8 = 120$ Ом, $R_$ 60 Ом и R₅ = 24 Ом, соединены параллельно и подключены к источнику постоянного тока. Если сила тока в источнике I = 6 A, то в резисторе R_2 сила тока I_2 равна:

- 1) 1.2 A 2) 2.0 A 3) 3.5 A 4) 4.6 A

- 5) 4.8 A

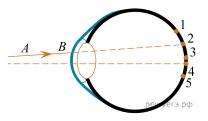

13. В магнитное поле, линии индукции \vec{B} которого изображены на рисунке, помещены небольшие магнитные стрелки, которые могут свободно вращаться. Южный полюс стрелки на рисунке светлый, северный — темный. В устойчивом положении находится стрелка, номер которой:

- 1) 1


5) 5

14. На рисунке изображен график зависимости силы тока I в катушке индуктивности от времени t. Если индуктивность катушки $L = 2.5 \, \Gamma$ н, то собственный магнитный поток Φ , пронизывающий витки катушки, в момент времени t = 2 с равен:

15. Математический маятник совершает своболные гармонические колебания. Точки 1 и 3 — положения максимального отклонения груза от положения равновесия (см. рис.). Если в точке 1 фаза колебаний маятника $\varphi_1 = 0$, то в точке 2 фаза колебаний φ_2 будет равна:


Условие уточнено редакцией РЕШУ ЦТ.

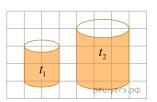
1) 0 2)
$$\frac{\pi}{2}$$
 3) $\frac{2\pi}{3}$ 4) π 5) 2

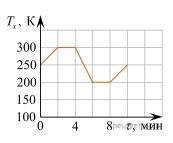
16. Точечный источник света находится на главной оптической оси глаза на расстоянии наилучшего видения (L = 25 см) при нормальном зрении. Если луч света АВ, идущий от источника, пройдет через точку, обозначенную цифрой ..., то у человека дефект зрения дальнозоркость.

Условие уточнено редакцией РЕШУ ИТ.

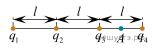
17. Катод фотоэлемента облучается фотонами энергия которых E = 5 эВ. Если работа выхода электрона с поверхности фотокатода $A_{\mathrm{BЫX}}$ = 4 эВ, то задерживающее напряжение U_3 , равно:

18. Атомный номер железа Z=26, а удельная энергия связи одного из его изотопов $\varepsilon=8.79$ МэВ/нуклон. Если энергия связи нуклонов в ядре этого изотопа $E_{\rm cs} = 510$ МэВ, то число нейтронов N в ядре равно:

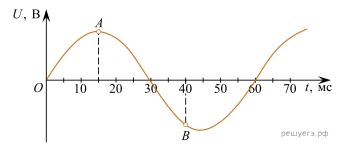

19. Диаметр велосипедного колеса d = 70 см, число зубьев ведущей звездочки $N_1 = 28$, ведомой — $N_2 = 24$ (см. рис.). Чтобы ехать с постоянной скоростью, модуль которой V = 12 км/ч, велосипедист должен равномерно крутить педали с частотой у равной ... **об/мин**.


5) 42

- 20. К бруску, находящемуся на гладкой горизонтальной поверхности, прикреплена невесомая пружина жесткостью k = 20 H/м. Свободный конец пружины тянут в горизонтальном направлении так, что длина пружины остается постоянной (l = 140 мм). Если длина пружины в недеформированном состоянии $l_0 = 100$ мм, а модуль ускорения бруска a = 1,25 м/с², то масса m бруска равна ... г.
- **21.** На дне вертикального цилиндрического сосуда, радиус основания которого R = 12 см, неплотно прилегая ко дну, лежит кубик. Длина стороны кубика a = 9 см. Если минимальный объем воды ($\rho_{\rm B} = 1,00~{\rm г/cm}^3$), которую нужно налить в сосуд, чтобы кубик начал плавать, $V_{\rm min} = 550~{\rm cm}^3$, то масса m кубика равна ... Γ .
- **22.** На невесомой нерастяжимой нити длиной l = 72 см висит небольшой шар массой M =52 г. Пуля массой m = 8 г. летяшая горизонтально со скоростью $\vec{\mathcal{D}}_0$, попадает в шар и застревает в нем. Если скорость пули была направлена вдоль диаметра шара, то шар совершит полный оборот по окружности в вертикальной плоскости при минимальном значении скорости υ₀ пули, равном ...м/с .
- **23.** Идеальный одноатомный газ, начальный объем которого $V_1 = 0.8 \text{ м}^3$, а количество вещества остается постоянным, находится под давлением $p_1 = 1.0 \cdot 10^5$ Па. Газ нагревают сначала изобарно до объема $V_2 = 4.0 \text{ m}^3$, а затем продолжают нагревать при постоянном объеме. Если конечное давление газа $p_2 = 3.0 \cdot 10^5$ Па, то количество теплоты, полученное им при переходе из начального состояния в конечное равно ... МДж.


24. Два однородных цилиндра (см. рис.), изготовленные из одинакового материала, привели в контакт. Если начальная температура первого цилиндра $t_1 = 23$ °C, а второго — $t_2 = 58$ °C, то при отсутствии теплообмена с окружающей средой установившаяся температура t цилиндров равна ... °C.

25. На рисунке изображен график зависимости температуры $T_{\rm X}$ холодильника тепловой машины, работающей по циклу Карно, от времени τ . Если температура нагревателя тепловой машины $T_{\rm H}=127$ °C, то максимальный коэффициент полезного действия $\eta_{\rm max}$ машины был равен ... %.



26. Четыре точечных заряда $q_1 = 5$ нКл, $q_2 = -0.9$ нКл, $q_3 = 0.5$ нКл, $q_4 = -2.0$ нКл расположены в вакууме на одной прямой (см. рис.). Если расстояние между соседними зарядами l = 60 мм, то в точке A, находящейся посередине между зарядами q_3 и q_4 , модуль напряженности E электростатического поля системы зарядов равен ... к \mathbf{B}/\mathbf{m} .

- **27.** Аккумулятор, ЭДС которого $\varepsilon=1,5$ В и внутреннее сопротивление r=0,1 Ом, замкнут нихромовым (c=0,46 кДж/(кг · K) проводником массой m=36,6 г. Если на нагревание проводника расходуется $\alpha=60\%$ выделяемой в проводнике энергии, то максимально возможное изменение температуры $\varDelta T_{\rm max}$ проводника за промежуток времени $\varDelta t=1$ мин равно ... **К**.
- **28.** Тонкое проволочное кольцо радиусом r = 4.0 см и массой m = 98.6 мг, изготовленное из проводника сопротивлением R = 90 мОм, находится в неоднородном магнитном поле, проекция индукции которого на ось Ox имеет вид $B_x = kx$, где k = 2.0 Тл/м, x координата. В направлении оси Ox кольцу ударом сообщили скорость, модуль которой $v_0 = 5.0$ м/с. Если плоскость кольца во время движения была перпендикулярна оси Ox, то до остановки кольцо прошло расстояние s, равное ... см.

29. Напряжение на участке цепи изменяется по гармоническому закону (см. рис.). В момент времени $t_{\rm A}=15$ мс напряжение на участке цепи равно $U_{\rm A}$, а в момент времени $t_{\rm B}=40$ мс равно $U_{\rm B}$. Если разность напряжений $U_A-U_B=50$ В, то действующее значение напряжения $U_{\rm A}$ равно ... **B**.

30. На дифракционную решетку падает нормально параллельный пучок монохроматического света длиной волны $\lambda=500$ нм. Если максимум пятого порядка отклонен от перпендикуляра к решетке на угол $\theta=30.0^\circ$, то каждый миллиметр решетки содержит число N штрихов, равное